Добавить новость
ru24.net
News in English
Май
2020

Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations

0

by Teeratorn Kadeethum, Thomas M. Jørgensen, Hamidreza M. Nick

This paper presents the potential of applying physics-informed neural networks for solving nonlinear multiphysics problems, which are essential to many fields such as biomedical engineering, earthquake prediction, and underground energy harvesting. Specifically, we investigate how to extend the methodology of physics-informed neural networks to solve both the forward and inverse problems in relation to the nonlinear diffusivity and Biot’s equations. We explore the accuracy of the physics-informed neural networks with different training example sizes and choices of hyperparameters. The impacts of the stochastic variations between various training realizations are also investigated. In the inverse case, we also study the effects of noisy measurements. Furthermore, we address the challenge of selecting the hyperparameters of the inverse model and illustrate how this challenge is linked to the hyperparameters selection performed for the forward one.



Moscow.media
Частные объявления сегодня





Rss.plus




Спорт в России и мире

Новости спорта


Новости тенниса
Александр Зверев

Australian Open. 12 января. Турнир начнут Котов, Зверев, Рууд, Мирра Андреева, Павлюченкова, Потапова, Блинкова, Соболенко






Старшеклассникам и студентам предложили принять участие в конкурсе по истории предпринимательства

Московские МФЦ предлагают процедуру примирения парам, которые разводятся

SHOT: мужчина бросил педарду в здание жилищной инспекции ЗАО в Москве

Овчинский: за январские праздники «Макет Москвы» посетили более 24 тыс человек