Добавить новость
ru24.net
News in English
Август
2020

Achieving stable dynamics in neural circuits

0

by Leo Kozachkov, Mikael Lundqvist, Jean-Jacques Slotine, Earl K. Miller

The brain consists of many interconnected networks with time-varying, partially autonomous activity. There are multiple sources of noise and variation yet activity has to eventually converge to a stable, reproducible state (or sequence of states) for its computations to make sense. We approached this problem from a control-theory perspective by applying contraction analysis to recurrent neural networks. This allowed us to find mechanisms for achieving stability in multiple connected networks with biologically realistic dynamics, including synaptic plasticity and time-varying inputs. These mechanisms included inhibitory Hebbian plasticity, excitatory anti-Hebbian plasticity, synaptic sparsity and excitatory-inhibitory balance. Our findings shed light on how stable computations might be achieved despite biological complexity. Crucially, our analysis is not limited to analyzing the stability of fixed geometric objects in state space (e.g points, lines, planes), but rather the stability of state trajectories which may be complex and time-varying.



Moscow.media
Частные объявления сегодня





Rss.plus




Спорт в России и мире

Новости спорта


Новости тенниса
Даниил Медведев

На турнире в Марселе под флагом России оказались имена Медведева и Хачанова






На имущество «Фабрики С-ТЕП» под Новосибирском резко снизили цену

Пенсии в России: кто получает меньше всех, а кому повезло больше

Большинство россиян этим летом проведут отпуск внутри страны

«Русгидро» для руководства построит семь домов в Соснах по соседству с губернатором края