Добавить новость
ru24.net
News in English
Март
2022

Addressing the mean-correlation relationship in co-expression analysis

0

by Yi Wang, Stephanie C. Hicks, Kasper D. Hansen

Estimates of correlation between pairs of genes in co-expression analysis are commonly used to construct networks among genes using gene expression data. As previously noted, the distribution of such correlations depends on the observed expression level of the involved genes, which we refer to this as a mean-correlation relationship in RNA-seq data, both bulk and single-cell. This dependence introduces an unwanted technical bias in co-expression analysis whereby highly expressed genes are more likely to be highly correlated. Such a relationship is not observed in protein-protein interaction data, suggesting that it is not reflecting biology. Ignoring this bias can lead to missing potentially biologically relevant pairs of genes that are lowly expressed, such as transcription factors. To address this problem, we introduce spatial quantile normalization (SpQN), a method for normalizing local distributions in a correlation matrix. We show that spatial quantile normalization removes the mean-correlation relationship and corrects the expression bias in network reconstruction.



Moscow.media
Частные объявления сегодня





Rss.plus




Спорт в России и мире

Новости спорта


Новости тенниса
WTA

WTA официально приняла решение по Рыбакиной






«Перебросить код через стену из юристов — еще не значит сделать его открытым», — Константин Осипов, основатель Picodata

Овчинский: более 65 детских площадок обустроили у домов по реновации в ЗАО

«Держать США близко, а Россию далеко»: Министр обороны Польши объяснил рекордные военные расходы Варшавы

BMW в Подмосковье разорвало пополам после удара о столб