Добавить новость
ru24.net
News in English
Сентябрь
2022

TAMC: A deep-learning approach to predict motif-centric transcriptional factor binding activity based on ATAC-seq profile

0

by Tianqi Yang, Ricardo Henao

Determining transcriptional factor binding sites (TFBSs) is critical for understanding the molecular mechanisms regulating gene expression in different biological conditions. Biological assays designed to directly mapping TFBSs require large sample size and intensive resources. As an alternative, ATAC-seq assay is simple to conduct and provides genomic cleavage profiles that contain rich information for imputing TFBSs indirectly. Previous footprint-based tools are inheritably limited by the accuracy of their bias correction algorithms and the efficiency of their feature extraction models. Here we introduce TAMC (Transcriptional factor binding prediction from ATAC-seq profile at Motif-predicted binding sites using Convolutional neural networks), a deep-learning approach for predicting motif-centric TF binding activity from paired-end ATAC-seq data. TAMC does not require bias correction during signal processing. By leveraging a one-dimensional convolutional neural network (1D-CNN) model, TAMC make predictions based on both footprint and non-footprint features at binding sites for each TF and outperforms existing footprinting tools in TFBS prediction particularly for ATAC-seq data with limited sequencing depth.



Moscow.media
Частные объявления сегодня





Rss.plus




Спорт в России и мире

Новости спорта


Новости тенниса
Елена Рыбакина

«Я не делала этого последние пять или шесть лет». Елена Рыбакина удивила откровенным признанием






Москвичей предупредили о гололедице и мокром снеге в ночь на 12 января

Тренер СКА Ротенберг объяснил несуществующими удалениями поражение от "Динамо"

Армения будет мерзнуть и доедать последнее без соли: Москва отреагировала на стремление Еревана в ЕС

Фотографии Ленинграда 1947 года