Добавить новость
ru24.net
News in English
Октябрь
2022

Longitudinal analysis of sentiment and emotion in news media headlines using automated labelling with Transformer language models

0

by David Rozado, Ruth Hughes, Jamin Halberstadt

This work describes a chronological (2000–2019) analysis of sentiment and emotion in 23 million headlines from 47 news media outlets popular in the United States. We use Transformer language models fine-tuned for detection of sentiment (positive, negative) and Ekman’s six basic emotions (anger, disgust, fear, joy, sadness, surprise) plus neutral to automatically label the headlines. Results show an increase of sentiment negativity in headlines across written news media since the year 2000. Headlines from right-leaning news media have been, on average, consistently more negative than headlines from left-leaning outlets over the entire studied time period. The chronological analysis of headlines emotionality shows a growing proportion of headlines denoting anger, fear, disgust and sadness and a decrease in the prevalence of emotionally neutral headlines across the studied outlets over the 2000–2019 interval. The prevalence of headlines denoting anger appears to be higher, on average, in right-leaning news outlets than in left-leaning news media.



Moscow.media
Частные объявления сегодня





Rss.plus




Спорт в России и мире

Новости спорта


Новости тенниса
Australian Open

Даниил Медведев сломал ракетку и камеру на Открытом чемпионате Австралии






Число частных инвесторов на Мосбирже в 2024 году выросло на 18% и превысило 35 млн

«Сибирь» — «Трактор». Прямая трансляция: смотреть онлайн матч КХЛ

Воробьев: автопарк скорой помощи в Подмосковье пополнили 77 новых автомобилей

Мосгорсуд заочно приговорил к 21,5 года организатора убийства Япончика