Low and high beta rhythms have different motor cortical sources and distinct roles in movement control and spatiotemporal attention
0
by Simon Nougaret, Laura López-Galdo, Emile Caytan, Julien Poitreau, Frédéric V. Barthélemy, Bjørg Elisabeth Kilavik
Low and high beta frequency rhythms were observed in the motor cortex, but their respective sources and behavioral correlates remain unknown. We studied local field potentials (LFPs) during pre-cued reaching behavior in macaques. They contained a low beta band (<20 Hz) dominant in primary motor cortex and a high beta band (>20 Hz) dominant in dorsal premotor cortex (PMd). Low beta correlated positively with reaction time (RT) from visual cue onset and negatively with uninstructed hand postural micro-movements throughout the trial. High beta reflected temporal task prediction, with selective modulations before and during cues, which were enhanced in moments of increased focal attention when the gaze was on the work area. This double-dissociation in sources and behavioral correlates of motor cortical low and high beta, with respect to both task-instructed and spontaneous behavior, reconciles the largely disparate roles proposed for the beta rhythm, by suggesting band-specific roles in both movement control and spatiotemporal attention.