Добавить новость
ru24.net
News in English
Июль
2024

Spatiotemporal information enhanced multi-feature short-term traffic flow prediction

0

by Deqi Huang, Jiajia He, Yating Tu, Zikuang Ye, Lirong Xie

Accurately predicting traffic flow is crucial for optimizing traffic conditions, reducing congestion, and improving travel efficiency. To explore spatiotemporal characteristics of traffic flow in depth, this study proposes the MFSTBiSGAT model. The MFSTBiSGAT model leverages graph attention networks to extract dynamic spatial features from complex road networks, and utilizes bidirectional long short-term memory networks to capture temporal correlations from both past and future time perspectives. Additionally, spatial and temporal information enhancement layers are employed to comprehensively capture traffic flow patterns. The model aims to directly extract original temporal features from traffic flow data, and utilizes the Spearman function to extract hidden spatial matrices of road networks for deeper insights into spatiotemporal characteristics. Historical traffic speed and lane occupancy data are integrated into the prediction model to reduce forecasting errors and enhance robustness. Experimental results on two real-world traffic datasets demonstrate that MFSTBiSGAT successfully extracts and captures spatiotemporal correlations in traffic networks, significantly improving prediction accuracy.



Moscow.media
Частные объявления сегодня





Rss.plus




Спорт в России и мире

Новости спорта


Новости тенниса
ATP

Хачанов и Рублев пробились в финал турнира ATP в Гонконге в парном разряде






В сгоревших бытовках в Новой Москве нашли тело человека

Эксперт рассказал о введении трех диапазонов потребления электричества

Южная Корея и США осудили запуск северокорейской ракеты средней дальности

РАН: Иран продолжит ориентироваться на Россию и Китай во внешней политике