An inhibitory mechanism of AasS, an exogenous fatty acid scavenger: Implications for re-sensitization of FAS II antimicrobials
0
by Haomin Huang, Shenghai Chang, Tao Cui, Man Huang, Jiuxin Qu, Huimin Zhang, Ting Lu, Xing Zhang, Chun Zhou, Youjun Feng
Antimicrobial resistance is an ongoing “one health” challenge of global concern. The acyl-ACP synthetase (termed AasS) of the zoonotic pathogen Vibrio harveyi recycles exogenous fatty acid (eFA), bypassing the requirement of type II fatty acid synthesis (FAS II), a druggable pathway. A growing body of bacterial AasS-type isoenzymes compromises the clinical efficacy of FAS II-directed antimicrobials, like cerulenin. Very recently, an acyl adenylate mimic, C10-AMS, was proposed as a lead compound against AasS activity. However, the underlying mechanism remains poorly understood. Here we present two high-resolution cryo-EM structures of AasS liganded with C10-AMS inhibitor (2.33 Å) and C10-AMP intermediate (2.19 Å) in addition to its apo form (2.53 Å). Apart from our measurements for C10-AMS’ Ki value of around 0.6 μM, structural and functional analyses explained how this inhibitor interacts with AasS enzyme. Unlike an open state of AasS, ready for C10-AMP formation, a closed conformation is trapped by the C10-AMS inhibitor. Tight binding of C10-AMS blocks fatty acyl substrate entry, and therefore inhibits AasS action. Additionally, this intermediate analog C10-AMS appears to be a mixed-type AasS inhibitor. In summary, our results provide proof of principle that inhibiting salvage of eFA by AasS reverses the FAS II bypass. This facilitates the development of next-generation of anti-bacterial therapeutics, esp. the dual therapy consisting of C10-AMS scaffold derivatives combined with certain FAS II inhibitors.