Добавить новость
ru24.net
News in English
Октябрь
2024

Transformer fault identification based on GWO-optimized Dual-channel M-A method

0

by Ning Ji, Xi Chen, Xue Qin, Wei Wei, Chenlu Jiang, Yifan Bo, Kai Tao

In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. First, a Dual-channel model is constructed by combining the AM (Attention Mechanism) and MLP. Subsequently, the GWO algorithm is used to optimize the number and the nodes of the hidden layer in the Dual-channel MLP-Attention model. Typical transformer faults are simulated using DDRTS (Digital Dynamic Real-Time Simulator) system. Experiments showed that the GWO- optimized method has an accuracy rate of 95.3%-96.7% in identifying the transformer faults. Compared with BP, SVM, MLP, and single-channel M-A models, the proposed method improved the accuracy by14.1%, 9.6%, 9.3%, and 3.3% respectively. This result indicates the rationality and effectiveness of the proposed method in transformer fault identification.



Moscow.media
Частные объявления сегодня





Rss.plus




Спорт в России и мире

Новости спорта


Новости тенниса
Камилла Рахимова

Камилла Рахимова проиграла на старте турнира в Индиан-Уэллсе






«Авторадио» – партнер сольного концерта Николая Носкова

ЕС одобрил масштабный план милитаризации на 800 млрд евро

Подмосковная промышленность увеличила объемы отгрузки продукции до 435 млрд рублей

В Подмосковье установили штраф за несоблюдение требований к содержанию питомцев