Добавить новость
ru24.net
News in English
Ноябрь
2024

How deep is your art: An experimental study on the limits of artistic understanding in a single-task, single-modality neural network

0

by Mahan Agha Zahedi, Niloofar Gholamrezaei, Alex Doboli

Computational modeling of artwork meaning is complex and difficult. This is because art interpretation is multidimensional and highly subjective. This paper experimentally investigated the degree to which a state-of-the-art Deep Convolutional Neural Network (DCNN), a popular Machine Learning approach, can correctly distinguish modern conceptual art work into the galleries devised by art curators. Two hypotheses were proposed to state that the DCNN model uses Exhibited Properties for classification, like shape and color, but not Non-Exhibited Properties, such as historical context and artist intention. The two hypotheses were experimentally validated using a methodology designed for this purpose. VGG-11 DCNN pre-trained on ImageNet dataset and discriminatively fine-tuned was trained on handcrafted datasets designed from real-world conceptual photography galleries. Experimental results supported the two hypotheses showing that the DCNN model ignores Non-Exhibited Properties and uses only Exhibited Properties for artwork classification. This work points to current DCNN limitations, which should be addressed by future DNN models.



Moscow.media
Частные объявления сегодня





Rss.plus




Спорт в России и мире

Новости спорта


Новости тенниса
Андрей Рублёв

Андрей Рублёв и Карен Хачанов вышли в четвертьфинал парного турнира в Гонконге






В России выросли штрафы за некоторые нарушения ПДД

Один человек погиб при пожаре в многоэтажке на юге Москвы

Нейросетевое кино покажут псковичам на фестивале анимационного кино

Царь ненастоящий! Старожилы рассказывают об особой атмосфере в доме Шурика