Добавить новость
ru24.net
News in English
Ноябрь
2024

AI improvements are slowing down. Companies have a plan to break through the wall.

0
 The tech world has been debating if AI models are plateauing.
  • The rate of AI model improvement appears to be slowing, but some tech leaders say there is no wall.
  • It's prompted a debate over how companies can overcome AI bottlenecks.
  • Business Insider spoke to 12 people at the forefront of the AI boom to find out the path forward.

Silicon Valley leaders all-in on the artificial intelligence boom have a message for critics: their technology has not hit a wall.

A fierce debate over whether improvements in AI models have hit their limit has taken hold in recent weeks, forcing several CEOs to respond. OpenAI boss Sam Altman was among the first to speak out, posting on X this month that "there is no wall."

Dario Amodei, CEO of rival firm Anthropic, and Jensen Huang, the CEO of Nvidia, have also disputed reports that AI progress has slowed. Others, including Marc Andreessen, say AI models aren't getting noticeably better and are all converging to perform at roughly similar levels.

This is a trillion-dollar question for the tech industry. If tried-and-tested AI model training methods are providing diminishing returns, it could undermine the core reason for an unprecedented investment cycle that's funding new startups, products, and data centers — and even rekindling idled nuclear power plants.

Business Insider spoke to 12 people at the forefront of the AI industry, including startup founders, investors, and current and former insiders at Google DeepMind and OpenAI, about the challenges and opportunities ahead in the quest for superintelligent AI.

Together, they said that tapping into new types of data, building reasoning into systems, and creating smaller but more specialized models are some of the ways to keep the wheels of AI progress turning.

The pre-training dilemma

Researchers point to two key blocks that companies may encounter in an early phase of AI development, known as pre-training. The first is access to computing power. More specifically, this means getting hold of specialist chips called GPUs. It's a market dominated by Santa Clara-based chip giant Nvidia, which has battled with supply constraints in the face of nonstop demand.

"If you have $50 million to spend on GPUs but you're on the bottom of Nvidia's list — we don't have enough kimchi to throw at this, and it will take time," said Henri Tilloy, partner at French VC firm Singular.

Jensen Huang's Nvidia has become the world's most valuable company off the back of the AI boom.

There is another supply problem, too: training data. AI companies have run into limits on the quantity of public data they can secure to feed into their large language models, or LLMs, in pre-training.

This phase involves training an LLM on a vast corpus of data, typically scraped from the internet, and then processed by GPUs. That information is then broken down into "tokens," which form the fundamental units of data processed by a model.

While throwing more data and GPUs at a model has reliably produced smarter models year after year, companies have been exhausting the supply of publicly available data on the internet. Research firm Epoch AI predicts usable textual data could be squeezed dry by 2028.

"The internet is only so large," Matthew Zeiler, founder and CEO of Clarifai, told BI.

Multimodal and private data

Eric Landau, cofounder and CEO of data startup Encord, said that this is where other data sources will offer a path forward in the scramble to overcome the bottleneck in public data.

One example is multimodal data, which involves feeding AI systems visual and audio sources of information, such as photos or podcast recordings. "That's one part of the picture," Landau said. "Just adding more modalities of data." AI labs have already started using multimodal data as a tool, but Landau says it remains "very underutilized."

Sharon Zhou, cofounder and CEO of LLM platform Lamini, sees another vastly untapped area: private data. Companies have been securing licensing agreements with publishers to gain access to their vast troves of information. OpenAI, for instance, has struck partnerships with organizations such as Vox Media and Stack Overflow, a Q&A platform for developers, to bring copyrighted data into their models.

"We are not even close to using all of the private data in the world to supplement the data we need for pre-training," Zhou said. "From work with our enterprise and even startup customers, there's a lot more signal in that data that is very useful for these models to capture."

A data quality problem

A great deal of research effort is now focused on enhancing the quality of data that an LLM is trained on rather than just the quantity. Researchers could previously afford to be "pretty lazy about the data" in pre-training, Zhou said, by just chucking as much as possible at a model to see what stuck. "This isn't totally true anymore," she said.

One solution that companies are exploring is synthetic data, an artificial form of data generated by AI.

According to Daniele Panfilo, CEO of startup Aindo AI, synthetic data can be a "powerful tool to improve data quality," as it can "help researchers construct datasets that meet their exact information needs." This is particularly useful in a phase of AI development known as post-training, where techniques such as fine-tuning can be used to give a pre-trained model a smaller dataset that has been carefully crafted with specific domain expertise, such as law or medicine.

One former employee at Google DeepMind, the search giant's AI lab, told BI that "Gemini has shifted its strategy" from going bigger to more efficient. "I think they've realized that it is actually very expensive to serve such large models, and it is better to specialize them for various tasks through better post-training," the former employee said.

Google launched Gemini, formerly known as Bard, in 2023.

In theory, synthetic data offers a useful way to hone a model's knowledge and make it smaller and more efficient. In practice, there's no full consensus on how effective synthetic data can be in making models smarter.

"What we discovered this year with our synthetic data, called Cosmopedia, is that it can help for some things, but it's not the silver bullet that's going to solve our data problem," Thomas Wolf, cofounder and chief science officer at open-source platform Hugging Face, told BI.

Jonathan Frankle, the chief AI scientist at Databricks, said there's no "free lunch " when it comes to synthetic data and emphasized the need for human oversight. "If you don't have any human insight, and you don't have any process of filtering and choosing which synthetic data is most relevant, then all the model is doing is reproducing its own behavior because that's what the model is intended to do," he said.

Concerns around synthetic data came to a head after a paper published in July in the journal Nature said there was a risk of "model collapse" with "indiscriminate use" of synthetic data. The message was to tread carefully.

Building a reasoning machine

For some, simply focusing on the training portion won't cut it.

Former OpenAI chief scientist and Safe Superintelligence cofounder Ilya Sutskever told Reuters this month that results from scaling models in pre-training had plateaued and that "everyone is looking for the next thing."

That "next thing" looks to be reasoning. Industry attention has increasingly turned to an area of AI known as inference, which focuses on the ability of a trained model to respond to queries and information it might not have seen before with reasoning capabilities.

At Microsoft's Ignite event this month, the company's CEO Satya Nadella said that instead of seeing so-called AI scaling laws hit a wall, he was seeing the emergence of a new paradigm for "test-time compute," which is when a model has the ability to take longer to respond to more complex prompts from users. Nadella pointed to a new "think harder" feature for Copilot — Microsoft's AI agent — which boosts test time to "solve even harder problems."

Aymeric Zhuo, cofounder and CEO of AI startup Agemo, said that AI reasoning "has been an active area of research," particularly as "the industry faces a data wall." He told BI that improving reasoning requires increasing test-time or inference-time compute.

Typically, the longer a model takes to process a dataset, the more accurate the outcomes it generates. Right now, models are being queried in milliseconds. "It doesn't quite make sense," Sivesh Sukumar, an investor at investment firm Balderton, told BI. "If you think about how the human brain works, even the smartest people take time to come up with solutions to problems."

In September, OpenAI released a new model, o1, which tries to "think" about an issue before responding. One OpenAI employee, who asked not to be named, told BI that "reasoning from first principles" is not the forte of LLMs as they work based on "a statistical probability of which words come next," but if we "want them to think and solve novel problem areas, they have to reason."

Noam Brown, a researcher at OpenAI, thinks the impact of a model with greater reasoning capabilities can be extraordinary. "It turned out that having a bot think for just 20 seconds in a hand of poker got the same boosting performance as scaling up the model by 100,000x and training it for 100,000 times longer," he said during a talk at TED AI last month.

Google and OpenAI did not respond to a request for comment from Business Insider.

The AI boom meets its tipping point

These efforts give researchers reasons to remain hopeful, even if current signs point to a slower rate of performance leaps. As a separate former DeepMind employee who worked on Gemini told BI, people are constantly "trying to find all sorts of different kinds of improvements."

That said, the industry may need to adjust to a slower pace of improvement.

"I just think we went through this crazy period of the models getting better really fast, like, a year or two ago. It's never been like that before," the former DeepMind employee told BI. "I don't think the rate of improvement has been as fast this year, but I don't think that's like some slowdown."

Lamini's Zhou echoed this point. Scaling laws — an observation that AI models improve with size, more data, and greater computing power —work on a logarithmic scale rather than a linear one, she said. In other words, think of AI advances as a curve rather than a straight upward line on a graph. That makes development far more expensive "than we'd expect for the next substantive step in this technology," Zhou said.

She added: "That's why I think our expectations are just not going to be met at the timeline we want, but also why we'll be more surprised by capabilities when they do appear."

Amazon Web Services CEO Adam Selipsky speaks with Anthropic CEO Dario Amodei during a 2023 conference.

Companies will also need to consider how much more expensive it will be to create the next versions of their highly prized models. According to Anthropic's Amodei, a training run in the future could one day cost $100 billion. These costs include GPUs, energy needs, and data processing.

Whether investors and customers are willing to wait around longer for the superintelligence they've been promised remains to be seen. Issues with Microsoft's Copilot, for instance, are leading some customers to wonder if the much-hyped tool is worth the money.

For now, AI leaders maintain that there are plenty of levers to pull — from new data sources to a focus on inference — to ensure models continue improving. Investors and customers just might have to be prepared for them to come at a slower pace compared to the breakneck pace set by OpenAI when it launched ChatGPT two years ago.

Bigger problems lie ahead if they don't.

Read the original article on Business Insider



Moscow.media
Частные объявления сегодня





Rss.plus



В Подмосковье сотрудники Росгвардии задержали гражданку, находившуюся в федеральном розыске

В Подмосковье офицер Росгвардии оказал помощь в эвакуации  пострадавших в результате ДТП

В Подмосковье росгвардейцы пришли на помощь пострадавшим в результате ДТП

В Подмосковье сотрудники Росгвардии задержали гражданку, находившуюся в федеральном розыске


Гастроэнтеролог Садыков рассказал, как холодец влияет на уровень холестерина

Менеджер Песни. Менеджер Релиза Песни.

Николай Семёнов – известный российский спортсмен, тренер, блогер и предприниматель.

Кабинет Артиста в Яндекс. Кабинет Артиста в Яндекс Музыке. 


What to know before Stanford visits SJSU for Bill Walsh Legacy Game

Lucas County Dogs for Adoption: 11/28

Best Black Friday office chair and desk deals: November 28

The Evolution of Graphic Design: What Today’s Designers Offer


StarLine на Международном полимерном симпозиуме

Энергоколлапс в Тверской области оставил людей без света

Hybrid разработал Creative Craft — продукт для генерации креативов с помощью технологий ИИ

Онкологи Пензенской области напоминают о важности профилактических медосмотров


The best-selling graphics card deals on Amazon right now, and which we recommend

Suicide Squad: Kill the Justice League is $3.50 on Steam, letting you poke around one of 2024's most interesting failures for the price of a cheeseburger

Riot is flexing its anticheat Vanguard by placing a bounty of up to $100,000 for anyone brilliant enough to find and report gaps in the system

Meet weird avians, save a kidnapped goddess, and explore a gorgeous lantern world inspired by Persian art in this very funny new indie adventure game


Секретар Миколаївської міськради у робочий час у нетверезому стані рекламував свій бізнес


Time to Cashmere

В Республике Татарстан пройдет региональный отборочный тур фестиваля детского творчества «Добрая волна»

Больше всего в России вырос спрос на антидепрессанты в Москве и Петербурге

Как подготовить машину к зиме




Мошенники придумали схему обмана с доставкой цветов

На Всероссийском музыкальном конкурсе жюри не стало присуждать первую и вторую премии

Спрос на антидепрессанты в Петербурге и Ленобласти увеличился на 17%

В рейтинге качества жизни российских городов Ростов обвалился сразу на 17 мест


В Москве мужчина похитил двоих несовершеннолетних и вымогал деньги

Андрей Рублев. Икона "Сретение*" из праздничного чина (иконостаса) Благовещения

Спрос на антидепрессанты в Петербурге и Ленобласти увеличился на 17%

Вотчина Деда Мороза опровергла слухи о закрытии резиденции


Трофеи Северной Пальмиры. Бублик сыграет с Баутиста-Агутом, Мыскина и Давыденко поборются с Весниной и Бахрами

Стало известно место Рыбакиной в рейтинге лидеров WTA по призовым за сезон

Кафельников назвал позором допинговые скандалы ведущих теннисистов

WTA сделала заявление об отстранении второй ракетки мира


Newsweek смоделировал ядерный удар по Москве, Пхеньяну и Пекину

В Москве мужчина похитил двоих несовершеннолетних и вымогал деньги

Где именно в Сирии находится Алеппо, что в нем такого важного и почему это нужно понимать?

На Всероссийском музыкальном конкурсе жюри не стало присуждать первую и вторую премии


Музыкальные новости

Шутки Фоменко – к богатству: на «Юмор FM» вновь миллион-марафон

Большой театр проведет трансляцию «Щелкунчика» перед Новым годом

Надоели скандалы "звёзд"? Шнуров и Собчак напомнили о себе очередным. Дошло до жёстких запретов

Дистрибьюция Музыки.



Time to Cashmere

В Республике Татарстан пройдет региональный отборочный тур фестиваля детского творчества «Добрая волна»

В Подмосковье сотрудники Росгвардии задержали гражданку, находившуюся в федеральном розыске

В Подмосковье сотрудники Росгвардии задержали гражданку, находившуюся в федеральном розыске


Олимпийская чемпионка Веснина проиграла в своём прощальном матче

"С 1 декабря все станет бесплатным": "Пятерочка", "Магнит" и "Ашан" подтвердили решение

В Солнечногорске сотрудники Росгвардии почтили память коллег, погибших при исполнении служебного долга

Лерчек получает букет от бывшего, а Джиган ищет жену и дочку в лесу: что смотреть на ТНТ в выходные


Грузовик врезался в два такси: в Москве произошло смертельное ДТП

Из пункта М в пункт П // «Ъ» напоминает, сколько времени уходило в разные времена на дорогу из Москвы в Петербург по воде, по земле и по воздуху

Как подготовить машину к зиме

Источник 360.ru: на Садовнической улице в Москве столкнулись три авто


Ракетный потенциал: Путин определил возможные стратегические цели «Орешника»

Посол Германии объяснил звонок Шольца Путину

Нехаммер допустил визит в Москву и Киев при снижении боевой активности

Путин пригласил президента Палестины на юбилей Победы в Москве





Больше всего в России вырос спрос на антидепрессанты в Москве и Петербурге

Онколог напомнил москвичам о важности проходить профилактические обследования ЖКТ

«Гнев врачуется временем»: зачем разводящимся супругам нужны три месяца на примирение

Российские разработчики покажут первую в РФ цифровую реанимацию


Βмecтο угля мοжeм тοпить муcοpοм – пapтия Зeлeнcκοгο пοдбaдpивaeт «гpοмaдян»

Из ответа Пескова Байдену следует, что ударов по центрам принятия решений может и не быть


Мужчина избил бейсбольной битой и ограбил своего знакомого на юге Москвы

«Усинская футбольная лига» преодолела экватор

ЦСКА спас ничью в матче с "Рубином" в РПЛ, благодаря голу Лукина на 96-й минуте

ЦСКА и "Рубин" огласили стартовые составы на матч 17-го тура РПЛ


Промышленность Беларуси и России выходит на новый уровень взаимодействия



Собянин рассказал о развитии проекта "Сделано в Москве"

Собянин назвал Москву центром создания прорывных технологий

Собянин заявил об открытии движения на 53-м километре Киевского шоссе

Сергей Собянин. Главное за день


В Hybrid Platform появилась функция создания кастомных метрик

В рейтинге качества жизни российских городов Ростов обвалился сразу на 17 мест

Киноплатформа «Москино» отмечена премией TAdviser IT Prize

Дерево с бородой растет в амурском лесничестве


Андрей Рублев. Икона "Сретение*" из праздничного чина (иконостаса) Благовещения

Newsweek смоделировал ядерный удар по Москве, Пхеньяну и Пекину

Вотчина Деда Мороза опровергла слухи о закрытии резиденции

Где именно в Сирии находится Алеппо, что в нем такого важного и почему это нужно понимать?


3D мэппинг-представление пройдет на Дворцовой площади

В Архангельске определили чемпионов Поморья по настольному теннису

Декабрь спрогнозировали россиянам синоптики

Школьники из Архангельской области – в числе победителей и призеров Национальной технологической олимпиады Junior


В России массово воруют масло: за неделю заведено около 50 дел

В рейтинге качества жизни российских городов Ростов обвалился сразу на 17 мест

«Жить стало лучше, жить стало веселее». Севастополь и Симферополь - в лидерах российского рейтинга по уровню жизни в 2024 году

Россияне активно воруют масло из магазинов по всей стране


Николич — о ничьей с «Рубином»: «Я доволен результатом матча. Кризиса нет точно»

Из пункта М в пункт П // «Ъ» напоминает, сколько времени уходило в разные времена на дорогу из Москвы в Петербург по воде, по земле и по воздуху

Портал Макгруп – всё для работы с бытовой техникой

Замдиректора Росгвардии вручил медали победителям соревнований по самбо в Москве












Спорт в России и мире

Новости спорта


Новости тенниса
US Open

Динара Сафина назвала турниры Большого шлема, которые Даниил Медведев может выиграть в следующем сезоне






В Хельсинки состоялась акция в поддержку открытия границы с Россией

Николич — о ничьей с «Рубином»: «Я доволен результатом матча. Кризиса нет точно»

Андрей Рублев. Икона "Сретение*" из праздничного чина (иконостаса) Благовещения

Гу Хайлун: у русского стиля прочная база, не нужно ей пренебрегать