Parallel development of object recognition in newborn chicks and deep neural networks
0
by Lalit Pandey, Donsuk Lee, Samantha M. W. Wood, Justin N. Wood
How do newborns learn to see? We propose that visual systems are space-time fitters, meaning visual development can be understood as a blind fitting process (akin to evolution) in which visual systems gradually adapt to the spatiotemporal data distributions in the newborn’s environment. To test whether space-time fitting is a viable theory for learning how to see, we performed parallel controlled-rearing experiments on newborn chicks and deep neural networks (DNNs), including CNNs and transformers. First, we raised newborn chicks in impoverished environments containing a single object, then simulated those environments in a video game engine. Second, we recorded first-person images from agents moving through the virtual animal chambers and used those images to train DNNs. Third, we compared the viewpoint-invariant object recognition performance of the chicks and DNNs. When DNNs received the same visual diet (training data) as chicks, the models developed common object recognition skills as chicks. DNNs that used time as a teaching signal—space-time fitters—also showed common patterns of successes and failures across the test viewpoints as chicks. Thus, DNNs can learn object recognition in the same impoverished environments as newborn animals. We argue that space-time fitters can serve as formal scientific models of newborn visual systems, providing image-computable models for studying how newborns learn to see from raw visual experiences.