Для устойчивого развития бизнеса необходимо активно работать с потребителями и изучать их поведение. Именно большие данные позволяют составить полный портрет аудитории и таргетировать креативы на необходимый сегмент потребителей. Профильный комитет АРИР собрал информацию об основных платформах работы с Big Data в мануал, чтобы углубить понимание экосистемы, сформировать индустриальные стандарты по использованию технологических инструментов и распространить знания о применении data-driven подхода в рекламе.Анжела Федорченко, вице-президент АРИР, генеральный директор Weborama Russia, уверена, что технологии продолжают развиваться, несмотря на непростую повестку и трансформацию российского рекламного рынка в более локализованный и изолированный. «В особенности это касается Big Data, поскольку data-driven стратегии последние несколько лет использовались повсеместно, способствуя лучшему пониманию аудитории, составлению полного портрета потребителя и выстраиванию персонализированной коммуникации», — дополняет эксперт. Изменения привычных паттернов поведения и перспектива отмены 3d party cookies делают вопрос интеграции технологий в индустрию рекламы еще более актуальным.Мануал разделен на 3 блока и предоставляет подробную информацию о платформах работы с данными для пользователей разного уровня. В документе дается определение каждого сервиса, описываются принципы его работы, сценарии использования, уровни развития продукта, а также проводится сравнение разных Big Data технологий.Перед индустрией, как отмечает Анжела Федорченко,стоит задача объединения усилий для просветительской работы и формирования ориентиров, которые будут определять движение рынка вперед в перспективе ближайших лет: «Мы стремимся к тому, чтобы углубить понимание экосистемы и распространить знание о том, как работают платформы по управлению данными, какое развитие мы видим в этой области, и как игрокам рынка адаптироваться к происходящим изменениям, укрепив при этом свой бизнес».Первый раздел посвящен DMP — Data Management Platform. Эта платформа позволяет управлять всеми типами анонимизированных аудиторных данных. Она собирает данные из различных источников в основном с помощью cookie. На основе их анализа сервис выделяет сегменты аудитории, создавая анонимный профиль каждого потребителя, и активирует их через медиа каналы. DMP применяется в диджитал-маркетинге для персонализации контента, управления данными и аналитики. Основными сценариями использования платформы являются оценка дата-потенциала компании, максимизация базы лояльных пользователей, персонализация и измерение эффективности рекламных кампаний.Функционал CDP, Customer Data Platform, описан во втором блоке мануала. Платформа собирает пользовательские данные из различных источников, создавая единый профиль потребителя и сохраняя информацию для отслеживания его поведения в будущем. С помощью идентификаторов инструмент таргетирует маркетинговые сообщения и отслеживает результаты на индивидуальном уровне. Централизация каналов коммуникации, построение целевого охвата, ретаргетинг, расширение аудитории бренда, построение CJM — некоторые сценарии, при которых использование платформ клиентских данных будет релевантным.CDP является самым развивающимся сегментом MarTech-индустрии и привлекает большое количество заказчиков, позволяя повысить эффективность коммуникации с потребителем. Спрос на омниканальность, улучшение CJM, прорыв e-com и интерес к cookieless-решениям будут стимулировать дальнейший рост этого сегмента рынка.Для снижения уровня замешательства среди покупателей CPD-институт запустил программу сертифицирования Real CDP. Она определяет набор необходимых функций и проводит аудит платформ клиентских данных. Российские компании также могут проходить сертификацию.Последний блок подробно останавливается на DIP,Data Intelligence Platform, единой платформе для управления данными потребителей, безопасного обмена между владельцами данных, аналитики и омниканальных коммуникаций. Сервис сочетает функционал CDP и DPM, дополняя его инструментами Data Lake и Data Clean Room. Первый представляет собой репозиторий, который позволяет извлекать полезную бизнес-аналитику из неструктурированных данных. DCR — пространство для безопасного обмена между различными компаниями любыми видами данных и проведения расширенной аналитики. Исключительно на базе DIP возможно построение кастомных аналитических моделей для сегментации, кросс-платформенная активация, негативный таргетинг, кросс-девайс идентификация, разработка новых брендов, упаковки и креативных концепций.Анжела Федорченко предполагает, что мануал найдет применение у тех представителей digital-индустрии, которые уже работают с платформами по управлению данными, в частности маркетологов. «Документ поможет им лучше разобраться с отличительными особенностями и прикладным значением DMP и CDP для решения бизнес-задач, а также познакомит их с решением нового поколения DIP», — поясняет эксперт. Также мануал будет полезен тем, кто только планирует начать работу с платформами. Он объяснит функционал, признаки и эффективные сценарии работы с данными, даст понимание релевантных KPI, которых возможно достичь.«Мы убеждены, что сейчас самое время знакомиться с документом. Традиционно в четвертом квартале, на который приходится публикация, планируются активности бренда на следующий год и защищаются стратегии. Изучив сценарии, представленные в мануале, каждый сможет определить для себя наиболее релевантные и соответствующие стратегии развития бренда и, возможно, запланировать их реализацию на 2024 год уже с использованием одной из платформ», — подводит итог Анжела Федорченко.