Composition and in situ structure of the Methanospirillum hungatei cell envelope and surface layer | Science Advances
Abstract
Archaea share genomic similarities with Eukarya and cellular architectural similarities with Bacteria, though archaeal and bacterial surface layers (S-layers) differ. Using cellular cryo–electron tomography, we visualized the S-layer lattice surrounding
Methanospirillum hungatei
, a methanogenic archaeon. Though more compact than known structures,
M. hungatei
’s S-layer is a flexible hexagonal lattice of dome-shaped tiles, uniformly spaced from both the overlying cell sheath and the underlying cell membrane. Subtomogram averaging resolved the S-layer hexamer tile at 6.4-angstrom resolution. By fitting an AlphaFold model into hexamer tiles in flat and curved conformations, we uncover intra- and intertile interactions that contribute to the S-layer’s cylindrical and flexible architecture, along with a spacer extension for cell membrane attachment.
M. hungatei
cell’s end plug structure, likely composed of S-layer isoforms, further highlights the uniqueness of this archaeal cell. These structural features offer advantages for methane release and reflect divergent evolutionary adaptations to environmental pressures during early microbial emergence.