Добавить новость
ru24.net
News in English
Январь
2025

Open-set deep learning–enabled single-cell Raman spectroscopy for rapid identification of airborne pathogens in real-world environments | Science Advances

0

Abstract

Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying pathogens directly from complex air environments remains highly challenging. We present an advanced method that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria. Through optimizing OSDL algorithms and training strategies, Raman-OSDL achieves 93% accuracy for five target airborne pathogens, 84% accuracy for untrained air bacteria, and 36% reduction in false positive rates compared to conventional close-set algorithms. It offers a high detection sensitivity down to 1:1000. When applied to real air containing >4600 bacterial species, our method accurately identifies single or multiple pathogens simultaneously within an hour. This single-cell tool advances rapidly surveilling pathogens in complex environments to prevent infection transmission.



Moscow.media
Частные объявления сегодня





Rss.plus




Спорт в России и мире

Новости спорта


Новости тенниса
WTA

Блинкова проиграла Кесслер в первом круге турнира WTA в Индиан-Уэллсе






В Подмосковье молодые люди затащили девочку-инвалида в подвал и изнасиловали ее

Губернатор Андрей Чибис принял участие в совещании по развитию Северного морского пути в Москве

В России хотят увеличить штраф за отсутствие детского кресла в машине

Cредний возраст по странам, миф о смертности от ПНН и пожилая целевая аудитория