An AP2/ERF transcription factor confers chilling tolerance in rice | Science Advances
Abstract
Cold stress, a prominent adverse environmental factor, severely hinders rice growth and productivity. Unraveling the complex mechanisms governing chilling tolerance in rice is crucial for molecular breeding of cold-tolerant varieties. Here, we identify an APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor, OsERF52, as a positive modulator in response to low temperatures. OsERF52 directly regulates the expression of
C-Repeat Binding Factor
(
CBF
) genes in rice. In addition, Osmotic Stress/ABA-Activated Protein Kinase 9–mediated phosphorylation of OsERF52 at S261 enhances its stability and interaction with Ideal Plant Architecture 1 and OsbHLH002/OsICE1. This collaborative activation leads to the expression of
OsCBFs
, thereby initiating the chilling response in rice. Notably, plants with base-edited
OsERF52
S261D
-3HA
exhibit enhanced chilling resistance without yield penalty. Our findings unveil the mechanism orchestrated by a regulatory framework involving a protein kinase and transcription factors from diverse families, offering potential genetic resources for developing chilling-tolerant rice varieties.