Добавить новость
ru24.net
Все новости
Декабрь
2024

Spatiotemporal characterization of water diffusion anomalies in saline solutions using machine learning force field | Science Advances

0

Abstract

Understanding water behavior in salt solutions remains a notable challenge in computational chemistry. Conventional force fields have shown limitations in accurately representing water’s properties across different salt types (chaotropes and kosmotropes) and concentrations, demonstrating the need for better methods. Machine learning force field applications in computational chemistry, especially through deep potential molecular dynamics (DPMD), offer a promising alternative that closely aligns with the accuracy of first-principles methods. Our research used DPMD to study how salts affect water by comparing its results with ab initio molecular dynamics, SPC/Fw, AMOEBA, and MB-Pol models. We studied water’s behavior in salt solutions by examining its spatiotemporally correlated movement. Our findings showed that each model’s accuracy in depicting water’s behavior in salt solutions is strongly connected to spatiotemporal correlation. This study demonstrates both DPMD’s advanced abilities in studying water-salt interactions and contributes to our understanding of the basic mechanisms that control these interactions.



Moscow.media
Частные объявления сегодня





Rss.plus




Спорт в России и мире

Новости спорта


Новости тенниса
ATP

Теннисист Бублик из-за провала на турнире в Дубае покинет топ-80 рейтинга ATP впервые с 2019 года






Поставленные в Нижнем Новгороде спектакли попали в «Золотой фонд»

Откройте для себя омолаживающую силу средств по уходу за кожей с минералами Мертвого моря

Врач «Динамо»: «Тюкавин может пропустить от месяца до полугода»

Посол Эквадора в РФ ожидает запуска прямых рейсов между странами